机器学习潜力是分子模拟的重要工具,但是由于缺乏高质量数据集来训练它们的发展,它们的开发阻碍了它们。我们描述了Spice数据集,这是一种新的量子化学数据集,用于训练与模拟与蛋白质相互作用的药物样的小分子相关的潜在。它包含超过110万个小分子,二聚体,二肽和溶剂化氨基酸的构象。它包括15个元素,带电和未充电的分子以及广泛的共价和非共价相互作用。它提供了在{\ omega} b97m-d3(bj)/def2-tzVPPD理论水平以及其他有用的数量(例如多极矩和键阶)上计算出的力和能量。我们在其上训练一组机器学习潜力,并证明它们可以在化学空间的广泛区域中实现化学精度。它可以作为创建可转移的,准备使用潜在功能用于分子模拟的宝贵资源。
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
当人类与机器人互动时,不可避免地会影响。考虑一辆在人类附近行驶的自动驾驶汽车:自动驾驶汽车的速度和转向将影响人类驾驶方式。先前的作品开发了框架,使机器人能够影响人类对所需行为的影响。但是,尽管这些方法在短期(即前几个人类机器人相互作用)中有效,但我们在这里探索了长期影响(即同一人与机器人之间的重复相互作用)。我们的主要见解是,人类是动态的:人们适应机器人,一旦人类学会预见机器人的行为,现在影响力的行为可能会失败。有了这种见解,我们在实验上证明了一种普遍的游戏理论形式主义,用于产生有影响力的机器人行为,而不是重复互动的有效性降低。接下来,我们为Stackelberg游戏提出了三个修改,这些游戏使机器人的政策具有影响力和不可预测性。我们最终在模拟和用户研究中测试了这些修改:我们的结果表明,故意使他们的行为更难预期的机器人能够更好地维持对长期互动的影响。在此处查看视频:https://youtu.be/ydo83cgjz2q
translated by 谷歌翻译
从较高的计算效率到实现新颖和复杂结构的发现,深度学习已成为设计和优化纳米光子电路和组件的有力框架。但是,数据驱动和基于勘探的机器学习策略在其对纳米光逆设计的有效性方面都有局限性。监督的机器学习方法需要大量的培训数据,以产生高性能模型,并且在设计空间的复杂性鉴于训练数据之外,难以推广。另一方面,基于无监督和强化学习的方法可以具有与之相关的非常长的培训或优化时间。在这里,我们证明了一种混合监督的学习和强化学习方法来实现纳米光子结构的逆设计,并证明这种方法可以减少训练数据的依赖性,改善模型预测的普遍性,并通过数量级缩短探索性培训时间。因此,提出的策略解决了许多现代深度学习的挑战,同时为新的设计方法开辟了大门,这些方法利用了多种机器学习算法来为光子设计提供更有效和实用的解决方案。
translated by 谷歌翻译
本文提出了一种评估RGB视频文件中可见人体组织灌注的方法。我们提出了源自远程光摄影(RPPG)信号的指标,以检测组织是否充分供应血液。灌注分析以三种不同的尺度进行,为不同的应用提供了灵活的方法。我们在每个尺度上独立地对局部定义的感兴趣区域独立执行平面正交到皮肤的RPPG。从提取的信号中,我们得出了信噪比,频域中的大小,心率,灌注指数以及特定RPPG信号之间的相关性,以便在局部评估人类组织特定区域的灌注。我们表明,本地解决的RPPG具有广泛的应用。作为示例性应用,我们介绍了术中术中灌注分析和可视化皮肤和器官移植期间的可视化,以及用于谋生评估以检测表现攻击到身份验证系统中的应用。
translated by 谷歌翻译
本文介绍了一个开源Python工具箱,称为“集合功能重要性(EFI)”,以提供机器学习(ML)研究人员,领域专家和决策者,具有强大而准确的功能重要性的重要性量化,以及更可靠的机械解释,对使用预测问题的特征的重要性更重要模糊集。该工具包的开发是为了解决特征重要性量化的不确定性,并且由于机器学习算法的多样性,重要性计算方法和数据集依赖性而缺乏可信赖的特征重要性解释。 EFI使用数据自举和决策融合技术(例如平均值,多数投票和模糊逻辑)与多个机器学习模型合并了不同的特征重要性计算方法。 EFI工具箱的主要属性是:(i)ML算法的自动优化,(ii)从优化的ML算法和功能重要性计算技术中自动计算一组功能重要性系数,(iii)使用多个重要性系数的自动汇总决策融合技术和(iv)模糊成员资格功能,显示了每个功能对预测任务的重要性。描述了工具箱的关键模块和功能,并使用流行的IRIS数据集提供了其应用程序的简单示例。
translated by 谷歌翻译
可以使用X射线自由电子激光器的强脉冲和短脉冲直接通过单次相干衍射成像直接观察到自由飞行中孤立的纳米样品的结构和动力学。广角散射图像甚至编码样品的三维形态信息,但是该信息的检索仍然是一个挑战。到目前为止,只有通过与高度约束模型拟合,需要对单镜头实现有效的三维形态重建,这需要有关可能的几何形状的先验知识。在这里,我们提出了一种更通用的成像方法。依赖于允许凸多面体描述的任何样品形态的模型,我们从单个银纳米颗粒中重建广角衍射模式。除了具有高对称性的已知结构动机外,我们还检索了以前无法访问的不完美形状和聚集物。我们的结果为单个纳米颗粒的真实3D结构确定以及最终的超快纳米级动力学的3D电影开辟了新的途径。
translated by 谷歌翻译
尽管早期的经验证据支持了学到的索引结构的案例,因为它们具有有利的平均案例表现,但对其最差的表现知之甚少。相比之下,已知经典结构可以实现最佳的最坏情况行为。这项工作评估了在存在对抗工作量的情况下学习指数结构的鲁棒性。为了模拟对抗性工作负载,我们对线性回归模型进行了数据中毒攻击,该模型操纵了训练学习的索引模型的累积分布函数(CDF)。攻击通过将一组中毒键注入训练数据集,从而恶化了基础ML模型的拟合度,从而导致模型的预测误差增加,从而减少了学习指数结构的整体性能。我们评估了各种回归方法的性能和学习指数实现Alex和PGM索引。我们表明,在对中毒与非毒品数据集进行评估时,学到的指数结构可能会遭受高达20%的显着性能恶化。
translated by 谷歌翻译
最小化能量的动力系统在几何和物理学中无处不在。我们为GNN提出了一个梯度流框架,其中方程遵循可学习能量的最陡峭下降的方向。这种方法允许从多粒子的角度来解释GNN的演变,以通过对称“通道混合”矩阵的正和负特征值在特征空间中学习吸引力和排斥力。我们对溶液进行光谱分析,并得出结论,梯度流量图卷积模型可以诱导以图高频为主导的动力学,这对于异性数据集是理想的。我们还描述了对常见GNN体系结构的结构约束,从而将其解释为梯度流。我们进行了彻底的消融研究,以证实我们的理论分析,并在现实世界同质和异性数据集上显示了简单和轻量级模型的竞争性能。
translated by 谷歌翻译
Transfer learning increasingly becomes an important tool in handling data scarcity often encountered in machine learning. In the application of high-throughput thickness as a downstream process of the high-throughput optimization of optoelectronic thin films with autonomous workflows, data scarcity occurs especially for new materials. To achieve high-throughput thickness characterization, we propose a machine learning model called thicknessML that predicts thickness from UV-Vis spectrophotometry input and an overarching transfer learning workflow. We demonstrate the transfer learning workflow from generic source domain of generic band-gapped materials to specific target domain of perovskite materials, where the target domain data only come from limited number (18) of refractive indices from literature. The target domain can be easily extended to other material classes with a few literature data. Defining thickness prediction accuracy to be within-10% deviation, thicknessML achieves 92.2% (with a deviation of 3.6%) accuracy with transfer learning compared to 81.8% (with a deviation of 3.6%) 11.7% without (lower mean and larger standard deviation). Experimental validation on six deposited perovskite films also corroborates the efficacy of the proposed workflow by yielding a 10.5% mean absolute percentage error (MAPE).
translated by 谷歌翻译